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We investigate propagation of perturbations of equilibrium states for a wide
class of 1D interacting particle systems. The class of systems considered incor-
porates zero range, K-exclusion, misanthropic, ‘‘bricklayers’’ models, and much
more. We do not assume attractivity of the interactions. We apply Yau’s relative
entropy method rather than coupling arguments. The result is partial extension
of T. Seppäläinen’s recent paper. For 0 < b < 1/5 fixed, we prove that, rescaling
microscopic space and time by N, respectively N1+b, the macroscopic evolution
of perturbations of microscopic order N−b of the equilibrium states is governed
by Burgers’ equation. The same statement should hold for 0 < b < 1/2 as in
Seppäläinen’s cited paper, but our method does not seem to work for b \ 1/5.
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1. INTRODUCTION

In the recent paper, (1) T. Seppäläinen proves that in the so-called totally
asymmetric stick process (equivalent to Hammersley’s process as seen from
a tagged particle), small perturbations of microscopic order N−b of equi-
librium states, macroscopically propagate according to Burgers’ equation,
if hydrodynamic limit is taken where space and time are rescaled by N,
respectively N1+b. This result is valid for any 0 < b < 1/2 fixed and
goes even beyond the appearence of shocks in the solution of Burgers’
equation. Seppäläinen’s proof relies on the combinatorial peculiarities of
Hammersley’s model and on coupling arguments. It is conjectured in ref. 1



that the result should be valid in much wider context, actually Burgers’
equation should govern propagation of disturbances of equilibria (in this
scaling regime) for essentially all interacting particle systems with one
conserved observable, which under Eulerian scaling lead to a nonlinear
1-conservation law. Seppäläinen’s cited result and also our present paper
conceptually is closely linked to the work of Esposito et al., (2) where this
kind of intermediate scaling was first applied for the simple exclusion
model in d=3.

In the present paper we partially extend Seppäläinen’s result. We
prove a very similar result universally holding for a wide class of inter-
acting particle systems. Our proof is structurally robust, it does not rely on
any combinatorial properties of the models considered. We apply Yau’s
relative entropy method rather than coupling arguments. We pay, of
course, a price for this generality: (1) applying the relative entropy method,
our results stay valid only up to the emergence of shocks in the Burgers’
solution and (2) we can prove our theorem only for b ¥ (0, 1/5) instead of
the ideal b ¥ (0, 1/2).

Technically speaking, the proof is a careful application of the relative
entropy method. However, we should emphasize that there is some new
idea in the ‘‘one-block replacement’’ step, where the standard large devia-
tion argument is replaced by a central limit estimate—and a stronger result
is gotten. See Lemma 2 and its proof. Also: since in our scaling regime we
have to consider mesoscopic blocks of size N2b rather than large micro-
scopic blocks, in the one block estimate so-called non-gradient arguments
(e.g., spectral gap estimates) are involved.

In our paper we only consider totally asymmetric systems to avoid
unnecessary lengthy calculations. All of our results can be extended to par-
tially asymmetric models using the same line of proof.

The paper is organized as follows. In Section 2 we present the models
considered and some preliminary computations (infinitesimal generators,
equilibria, reversed processes, eulerian hydrodynamic limits, formal per-
turbations). In Section 3 the main result is precisely formulated in terms of
relative entropies. Section 4 contains the proof. This is broken up in several
subsections, according to what we consider a logical structure.

2. PRELIMINARIES

2.1. The Models

2.1.1. Notation, State Space

Throughout this paper we denote by T
N the discrete tori Z/NZ,

N ¥N, and by T the continuous torus R/Z.
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Let zmin, zmax ¥ Z 2 {−.,.} with zmin < zmax, and S :=[zmin, zmax] 5 Z.
The state space of the interacting particles system considered is

W
N :=ST

N
.

Configurations will be denoted

z
¯
:=(zj )j ¥ T

N ¥ W
N,

2.1.2. Rate Functions, Infinitesimal Generator, and Examples

Following refs. 3–5, we require that the rate function c: S×SQ [0,.)
satisfy the following conditions. As we later see, these conditions result that
there exists a translation invariant product measure for our Markov
process which will play a very important part in our proof.

(A) For any x, y ¥ S

c(zmin, y)=0=c(x, zmax),

Note, that this condition is restrictive only if either −. < zmin or
zmax <+.. It guarantees that, with probability 1, the local ‘‘spins’’ zj stay
confined within the bounds [zmin, zmax]. In order to avoid degeneracies we
also assume that for x ¥ (zmin, zmax] and y ¥ [zmin, zmax)

c(x, y) > 0. (1)

(B) For any x, y, z ¥ S

c(x, y)+c(y, z)+c(z, x)=c(y, x)+c(z, y)+c(x, z).

(C) For any x, y, z ¥ S0{zmin}

c(x, y−1) c(y, z−1) c(z, x−1)=c(y, x−1) c(z, y−1) c(x, z−1).

This condition is equivalent to requiring that there exist a function
r: SQ [0,.), with r(zmin)=0, such that for any x, y ¥ S0{zmin}

c(x, y−1)
c(y, x−1)

=
r(x)
r(y)
.

If −. < zmin or zmax <+., we formally extend r to Z as r(x)=0 for
x < zmin, and r(x)=. for x > zmax.
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Remarks. (1) The monotonicity condition c(x, y+1) [ c(x, y) [
c(x+1, y) would imply attractivity of the processes defined below. We do
not require this property of the rate functions. Our arguments do not rely
on coupling ideas.

(2) In the case of unbounded z-variable, max{|zmin |, |zmax |}=., we
shall also impose some growth condition on the rate function c(x, y). See
condition (D) below.

The elementary movements of our Markov process are: (zj , zj+1)Q
(zj −1, zj+1+1) with rate c(zj , zj+1). More formally, we define Gj : WN

Q WN:

(Gj z¯
)i=zi−di, j+di, j+1.

The infinitesimal generator of the process defined on the torus TN is

LNf(z
¯
)= C

j ¥ T
N
c(zj , zj+1)(f(Gj z¯

)−f(z
¯
)).

We shall refer to models defined by this infinitesimal generator as deposi-
tion models. Our main result is valid for deposition models with

(a) finite state space S with rates c(x, y) satisfying (A)–(C), or

(b) infinite state space S with rates c(x, y) satisfying (A)–(D). (These
are either zero range or bricklayers models.)

Clearly, due to the nondegeneracy condition (1), the only conserved
quantity of the process is ; j zj .

Remark on Notation. Consequently, we shall denote by z
¯
=

(zj )j ¥ T
N an element of the state space WN and by z

¯
(s) the Markov process

on WN with infinitesimal generator LN.
There are three essentially different classes of examples.

(1) Bounded Occupation Number. The only example with zmin=0
and zmax=1 is the completely asymmetric simple exclusion model. For any
K > 0 one can easily check that there exists a finite-parameter family of
models with zmin=0 and zmax=K satisfying conditions A to C. These are
usually called generalized K-exclusion models.

Example. If zmin=0 and zmax=2 with c(0, y)=0=c(x, 2) and
c(2, 0)=c(2, 1)+c(1, 0), no restriction on c(1, 1) then we have a 3-
parameter family of models satisfying conditions A to C. In the case of
zmin=0 and zmax=3 one may easily check that we get a 5-parameter family
satisfying the conditions.
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(2) Occupation Number Bounded from Below. There exists an infi-
nite-parameter family of models with zmin=0 and zmax=+.. In particular,
with

c(x, y)=r(x)=1{x > 0} r(x),

we get the zero range models.

(3) Unbounded Signed Occupation Number. From the infinite-
parameter family of possible models with zmin=−. and zmax=+. we
point out the following: let r: ZQ (0,.) satisfy

r(z) r(−z+1)=1.

Define

c(x, y)=r(x)+r(−y)

Following refs. 5–6 we call these models bricklayers models.

If the occupation number is not bounded (i.e., the state space is not
compact) we need some additional conditions on the growth of the rates.
In order to avoid lengthy technical computations we only consider two
special cases: the zero range model and the bricklayers model, defined in
examples (2) and (3). For these models we need the following extra condi-
tions which imply that for x ¥N r(x) is essentially linear:

(D) Growth condition for zero range and bricklayers models

(i) supx ¥N |r(x+1)−r(x)| [ a1 <..

(ii) There exists x0 ¥N and a2 > 0 such that r(x)−r(y) \ a2 for all
x \ y+x0.

These conditions will guarantee the existence of dynamics and cf. ref. 7
the uniform spectral gap estimate stated in Lemma 5.

2.2. Equilibrium States and Reversed Process

2.2.1. Stationary Measures

From the growth condition D it follows that

Z :=C
.

n=1
D
n

k=1
r(−k+1)+1+C

.

n=1
D
n

k=1
r(k)−1 <..
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We define the following probability measure on S

p(x) :=˛Z−1 D
x

k=1
r(k)−1 if x \ 0,

Z−1 D
−x

k=1
r(−k+1) if x [ 0.

For h ¥ R let

F(h) :=log C
z ¥ S
ehzp(z)

and

hmin :=inf{h: F(h) <.} hmax :=sup{h: F(h) <.}

For h ¥ (hmin, hmax) we define the probability measures

ph(z) :=p(z) exp{hz−F(h)}

on S. Expectation, variance and covariance with respect to the measure ph
will be denoted by Eh( · · · ), Varh( · · · ) and Covh( · · · ), respectively.

According to refs. 3–5, conditions A to C guarantee that for any
h ¥ (hmin, hmax) the product measure

pNh := D
j ¥ T

N
ph.

is stationary for the Markov process. However, due to the conservation of
; j zj , on the finite tori TN these measures are not ergodic. It is a standard
matter to check that the measures conditioned on the value of ; j zj ,

pNk (z¯
) :=pNh 1z¯
:C
j
zj=k2 , k ¥ Z 5 [Nzmin, Nzmax],

are ergodic. We shall refer to pNh , respectively, pNk as grand canonical,
respectively, canonical measures for our model. (The different uses of the
subscript should not cause any confusion.)

2.2.2. The Reversed Process

The elementary movements of the reversed process are (zj−1, zj )Q
(zj−1+1, zj −1) with rate c(zj , zj−1).
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Define Gg
j : W

N
Q WN,

(Gg
j z¯
)i=zi−di, j+di, j−1.

The reversed generator on the torus TN:

LN*f(z
¯
)= C

j ¥ T
N
c(zj , zj−1)(f(G

g
j z¯
)−f(z

¯
)).

Note, that the reveresed process is the same for any pNh , h ¥ (hmin, hmax), or
pNk , k ¥ Z 5 [Nzmin, Nzmax].

2.2.3. Some Expectations

We denote

v(h) :=Eh(z)=C
z ¥ S
zph(z)=FŒ(h).

Elementary computations show

vŒ(h)=Fœ(h)=Varh(z) > 0,

thus (hmin, hmax) ¦ h W v(h) ¥ (zmin, zmax) is invertible. With some abuse of
notation denote the inverse function by h(v).

Further notation: we shall denote

Fj :=c(zj+1, zj ),

F1(v) :=Eh(v)(Fj )= C
x, y ¥ S

ph(v)(x) ph(v)(y) c(x, y).

Clearly, if −. < zmin < zmax <. then F1(v) is bounded. On the other hand,
for the zero range models and bricklayers’ models with rate function r
satisfying condition (D), straightforward estimates show that

F1(v) [ C|v|

and also that Fj has finite exponential moment with respect to any grand
canonical measure.

Remark on Notation of Finite-Base Cylinder Functions. If Y:
SmQ R,then we shall denote Yj :=Y(zj ,..., zj+m−1). The indices j ¥ TN are
always meant periodically, mod N. Expectation of Yj with respect to the
grand canonical measure pNh(v) is denoted

Y1 (v) :=Eh(v)(Yj )= C
z1,..., zm ¥ S

ph(v)(z1) · · ·ph(v)(zm) Y(z1,..., zm).
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2.3. Hydrodynamic Limits

2.3.1. Eulerian Scaling and Its Formal Perturbation

For the local density v(t, x) of the conserved quantity ; j zj , under
Eulerian scaling, by applying Yau’s relative entropy method (see ref. 8, or
Chapter 6 of ref. 9, or Section 8 of ref. 10), one gets the pde:

“tv+“xF1(v)=0. (2)

2.3.2. Perturbation of the Euler Equation

Throughout the rest of this paper v0 ¥ (zmin, zmax) will be fixed and the
shorthand notation

a0 :=F1(v0), b0 :=F1 Œ(v0), c0 :=F1œ(v0) (3)

will be used. Note that b0 is the characteristic speed for the hyperbolic pde
(2), corresponding to v0. Furthermore, it is assumed that c0 ] 0.

We now consider a small perturbation of the trivial constant solution
v(t, x) — v0 of (2). We fix b > 0 and insert in (2)

v (e)(t, x) :=v0+ebu(e1+bt, e(x−b0t)).

Letting e Q 0, formally the inviscid Burgers’ equation is gotten for u:

“tu+
c0
2
“x(u2)=0. (4)

3. THE MAIN RESULT

3.1. Further Notation and Terminology

Let v0 ¥ (zmin, zmax) be fixed and a0, b0 and c0 as defined in (3), c0 ] 0 is
assumed. We also denote h0 :=h(v0).

Furthermore, let u(t, x), t ¥ [0, T], x ¥ T, be smooth solution of
Burgers’ equation (4) (more precisely: let it be twice continuously differen-
tiable in both variables). We shall use as absolute reference measure the
stationary measure

pN := D
j ¥ T

N
ph0 .

We define

hN(t, x) :=Nb(h(v0+N−bu(t, x−Nbb0t))−h0)

i.e., h(v0+N−bu(t, x−Nbb0t))=h0+N−bhN(t, x).
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The partial derivatives of hN(t, x) are easily computed:

hNx (t, x) :=“xh
N(t, x)=hŒ(v0+N−bu(t, x−Nbb0t)) “xu(t, x−Nbb0t)

hNt (t, x) :=“th
N(t, x)=−hNx (t, x)×(c0u(t, x−N

bb0t)+Nbb0)
(5)

In the computation of “thN we use the fact that u is smooth solution of (4).
The time dependent reference measure (not to be confused with the

absolute reference measure!) is

nNt := D
j ¥ T

N
ph0+N−bhN(t, j/N)= D

j ¥ T
N

ph(v0+N−bu(t, j/N−Nbb0t)). (6)

The true distribution of our process on TN, at macroscopic time t, i.e., at
microscopic time N1+bt is

mNt :=mN0 exp{N1+btLN}. (7)

The Radon–Nikodym derivatives of these last two probability measures on
WN, with respect to the absolute reference measure pN, are

fNt (z¯
) :=
dnNt
dpN
(z
¯
)

= D
j ¥ T

N
exp{zjN−bhN(t, j/N)−F(h0+N−bhN(t, j/N))+F(h0)}

hNt (z¯
) :=
dmNt
dpN
(z
¯
)=exp{N1+btLN*} hN0 (z¯

) (8)

3.2. What Is to Be Proved?

We want to prove that if mN0 is close to nN0 , in the sense of the relative
entropy H(mN0 | n

N
0 ) being small, then mNt stays close to nNt in the same

sense, uniformly for t ¥ [0, T].
How close? Given two smooth profiles ui: TQ R, i=1, 2, let

nNi := D
j ¥ T

N
ph(v0+N−bui(j/N)), i=1, 2.

Then, an easy computation shows that the relative entropy H(nN2 | n
N
1 ) is

H(nN2 | n
N
1 )= C

j ¥ T
N
H(ph(v0+N−bu2(j/N)) | ph(v0+N−bu1(j/N)))

=N1−2bh −0 F
T
(u2−u1) 1u2−

F'0h
−

0

2
(u2+u1)2 dx+O(N1−3b),
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where h −0 :=hŒ(v0) and F'0 :=Fœ(h0). This suggests that one should prove

HN(t) :=H(mNt | n
N
t )=o(N

1−2b), (9)

uniformly for t ¥ [0, T].

3.3. Main Result

Consider a deposition model with rate function satisfying conditions
A–D (of course, condition D is only needed if S is not finite). Let v0 ¥
(zmin, zmax) be fixed so that c0 defined in (3) is nonzero. Let u: [0, T]×T
Q R be a smooth solution of the inviscid Burgers’ equation (4) (more preci-
sely: twice continuously differentiability in both variables suffice). Further
on, let nNt , respectively, mNt be the time dependent reference measure, respec-
tively, the true distribution of the mysanthrope process, defined in (6),
respectively, (7).

Our main result is the following

Theorem. Let b ¥ (0, 1/5) be fixed. Under the stated conditions, if

H(mN0 | p
N)=O(N1−2b)

and (9) holds for t=0, than (9) will hold uniformly for t ¥ [0, T].

Remark. The statement should hold for b < 1/2, but, with our
method, seemingly only b < 1/5 can be treated.

From this theorem, by applying the entropy inequality the next
corollary follows:

Corollary. Under the conditions of the Theorem, for any smooth
test function j: TQ R

N−1+b C
j ¥ T

N
j((j−N1+bb0t)/N)(zj (N1+bt)−v0)0P F

T
j(x) u(t, x) dx,

as NQ..

4. PROOF

Our strategy is to get a Grönwall type estimate. We shall prove

HN(t)−HN(0) [ C F
t

0
HN(s) ds+ErrN(t). (10)
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It is assumed that HN(0)=o(N1−2b) and the error estimate ErrN(t)=
o(N1−2b) is the main point.

Important Remark on Further Notation. In the remaining part of
the paper, without loss of generality, we assume

v0=0, h0=0, a0=0.

This means that from now on z, v, h, F, and F1 stand for z−v0, v−v0,
h−h0, F−a0, and F1 −a0

4.1. Estimating ªtH
N(t)

In order to prove an inequality like (10) we need to estimate “tHN(t).
Using the well known inequality

fL log f [ Lf

which holds for every f \ 0, straightforward computations lead to

“tHN(t) [N1+b F
W
N

LN*fNt
fNt

dmNt −F
W
N

“tf
N
t

fNt
dmNt . (11)

(See Chapter 6 of ref. 9 or the paper of ref. 8 for details.)

Further Remarks on Notation. In Sections 4.1 and 4.2 t ¥ [0, T]
will be fixed. In order to avoid heavy notations, in these subsections we do
not denote explicitly dependence on t. In particular we shall use the
following shorthand notations

hN(x) :=hN(t, x), hNx (x) :=hNx (t, x), hNt (x) :=hNt (t, x),

uN(x) :=u(t, x−Nbb0t)

Discrete gradient of functions g: TQ R will be denoted

NNg(x) :=N(g(x+1/N)−g(x)).

4.1.1. Computation of LN*f N
t / f N

t

After straightforward calculations we have
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LN*fNt
fNt

(z
¯
)= C

j ¥ T
N
(e−N

−1−b(NNhN)(j/N)−1) Fj

=−N−1−b C
j ¥ T

N
hNx (j/N)(Fj −F1(N−buN(j/N)))

−N−1−b C
j ¥ T

N
hNx (j/N) F1(N−buN(j/N))

+ C
j ¥ T

N
(e−N

−1−b(NNhN)(j/N)−e−N
−1−b

h
N
x (j/N)) Fj

+ C
j ¥ T

N
A(N−1−bhNx (j/N)) Fj

where in the last line the shorthand notation A(x) :=e−x−1+x is used.
The main term is the first sum on the right hand side. We introduce

Yj :=Fj −b0zj

Y1 (v) :=Eh(v)(Yj )=F1(v)−b0v

and write in the main term

Fj −F1(N−bu)=(Yj −Y1 (N−bu))+b0(zj −N−bu)

Thus, eventually we get

N1+b F
W
N

LN*fNt
fNt

dmNt =− C
j ¥ T

N
hNx (j/N) F

W
N
(Yj −Y1 (N−buN(j/N))) dmNt

−b0 C
j ¥ T

N
hNx (j/N) F

W
N
(zj −N−buN(j/N)) dm

N
t

+ErrN1 (t)+ErrN2 (t)+ErrN3 (t), (12)

where the error terms are

ErrN1 (t)=− C
j ¥ T

N
hNx (j/N) F1(N−buN(j/N)), (13)

ErrN2 (t)=N
1+b C

j ¥ T
N
(e−N

−1−b(NNhN)(j/N)−e−N
−1−b

h
N
x (j/N)) F

W
N

Fj dm
N
t , (14)

ErrN3 (t)=N
1+b C

j ¥ T
N
A(N−1−bhNx (j/N)) F

W
N

Fj dm
N
t . (15)
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4.1.2. Computation of “t f
N
t / f N

t

Now we turn our attention to the second term on the right side of (11).
From (8) and (5) we get:

“tf
N
t

fNt
(z
¯
)= C

j ¥ T
N
N−bhNt (j/N)(zj −N

−buN(j/N))

=− C
j ¥ T

N
hNx (j/N)(c0N

−buN(j/N)+b0)(zj −N−buN(j/N))

In the last sum we write

c0N−bu=Y1 Œ(N−bu)−(Y1 Œ(N−bu)−c0N−bu)

and note that the second term is a small error.
Eventually we get:

−F
W
N

“tf
N
t

fNt
dmNt (z¯

)

= C
j ¥ T

N
hNx (j/N) Y1 Œ(N−buN(j/N)) F

W
N
(zj −N−buN(j/N)) dm

N
t (z¯
)

−b0 C
j ¥ T

N
hNx (j/N) F

W
N
(zj −N−buN(j/N)) dm

N
t +ErrN4 (t) (16)

where

ErrN4 (t)=− C
j ¥ T

N
hNx (j/N)(Y1 Œ(N

−buN(j/N)) c0N−buN(j/N))

×F
W
N
(zj −N−buN(j/N)) dm

N
t (z¯
). (17)

Note that, when inserting in (11), the second sums on the right hand side of
(12) and (16) cancel out.

4.1.3. Blocks

Throughout the paper the one-block size l will be chosen, depending
on the system size N, so that asymptotically

l±N2b.
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We introduce the block averages

Y l
j :=l

−1 C
l−1

i=0
Yj+i, z lj :=l

−1 C
l−1

i=0
zj+i.

The main terms (i.e., the first sums on the right hand side) in (12), respec-
tively, in (16) become

− C
j ¥ T

N
hNx (j/N) F

W
N
(Y l

j−Y1 (N−buN(j/N))) dmNt +ErrN, l5 (t), (18)

respectively,

C
j ¥ T

N
hNx (j/N) Y1 Œ(N−buN(j/N)) F

W
N
(z lj−N

−buN(j/N)) dmNt (z¯
)+ErrN, l6 (t).

(19)

After rearrangement of sums the error terms ErrN, l5 (t), respectively,
ErrN, l6 (t) are written as

ErrN, l5 (t)=− C
j ¥ T

N

1 l−1 C
l−1

i=0
hNx ((j− i)/N)−hNx (j/N)2 F

W
N

Yj dm
N
t (z¯
) (20)

ErrN, l6 (t)= C
j ¥ T

N

1 l−1 C
l−1

i=0
hNx ((j− i)/N) Y1 Œ(N−buN((j− i)/N))

−hNx (j/N) Y1 Œ(N−buN(j/N))2 F
W
N
zj dm

N
t (z¯
). (21)

4.1.4. Sumup and Estimate of the Error Terms (So Far)

Summing up, from (11), (12), (16), (18) and (19), so far we have got:

“tHN(t) [ − C
j ¥ T

N
hNx (j/N) F

W
N
(Y l

j−Y1 (N−buN(j/N))

−Y1 Œ(N−buN(j/N))(z lj−N
−buN(j/N))) dmNt (z¯

)

+ErrN1 (t)+ErrN2 (t)+ErrN3 (t)

+ErrN4 (t)+ErrN, l5 (t)+ErrN, l6 (t) (22)

with the error terms given in (13), (14), (15), (17), (20), (21), respectively.
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For the estimate of the these terms we use the following lemma:

Lemma 1. Let Y: ZmQ R be a finite cylinder function and denote
Yj :=Y(zj , ..., zj+m−1). Assume that, for |c| < c0, Ep(exp{cY}) <.. Then
there exists a constant C <. depending only on m and c0 , such that for
any kN: TNQ R,

C
j ¥ T

N
kN(j) F

W
N

Yj dm
N
t [ C max

j ¥ T
N
|kN(j)| (N1−b+NEp(Y)),

uniformly for t ¥ [0, T].

Proof. We may assume that maxj ¥ T
N |kN(j)|=1 and EpY(z)=0.

We set c1 :=c0N−b < c0 then with the entropy inequality:

: C
j ¥ T

N
kN(j) F

W
N

Yj dm
N
t
: [ 1

c1
H(mNt | p

N)+
1
c1

log Ep exp 3c1 C
j ¥ T

N
kN(j) Yj 4 .

Applying the Hölder inequality to the second term, and using that Yj and
Yk are independent if | j−k| > m we have

: C
j ¥ T

N
kN(j) F

W
N

Yj dm
N
t
: [ 1

c1
H(mNt |p

N)+
1

c1m
C
j ¥ T

N
L(c1mkN(j)),

where we use the notation L(c) :=log Ep exp{cY(z)}.
Now, L(0)=L −(0)=0, thus we have the asymptotics L(c)=O(c2) for

||c||° 1. Since maxj ¥ T
N |kN(j)|=1 and c1=O(N−b) there exists a positive

constant C1 such that L(c1mkN(j)) [ C1c
2
1 for every j ¥ TN. There also

exists a constant C2 with H(mNt | p
N) [ C2N1−2b. From these the lemma

follows with C=C2/c0+C1c0m. L

By Lemma 1 and the smoothness of u(t, x) we readily get:

ErrN1 (t)=O(N1−3b),

ErrN2 (t)=O(N−b),

ErrN3 (t)=O(N1−4b),

ErrN4 (t)=O(N1−4b),

ErrN, l5 (t)=O(N−bl),

ErrN, l6 (t)=O(N−2bl).
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4.2. One Block Replacement

On the right hand side of (22) we replace the block average Y l
j(z¯
) by

its ‘‘local equilibrium value:’’ Y1 (z lj). We denote

R(x, y) :=Y1 (x)−Y1 (y)−Y1 Œ(y)(x−y) (23)

Then:

“tHN(t) [ − C
j ¥ T

N
hNx (j/N) F

W
N
R(z lj, N

−buN(j/N)) dmNt (z¯
)

+MN, l(t)+O(N1−3bKN−bl),

[ sup
0 < t < T
j ¥ T

N

|hNx (j/N)| C
j ¥ T

N
F
W
N
|R(z lj, N

−buN(j/N))| dmNt (z¯
)

+MN, l(t)+O(N1−3bKN−bl), (24)

where

MN, l(t) :=− C
j ¥ T

N
hNx (j/N) F

W
N
(Y l

j−Y1 (z lj)) dm
N
t (z¯
). (25)

The estimate of > t0 MN, l(s) ds is done in the next subsection, by the so-
called ‘‘one block estimate.’’

We estimate now the first term on the right hand side of (24). Assume
N=Ml. By the entropy inequality

C
j ¥ T

N
F
W
N
|R(z lj, N

−buN(j/N))| dmNt

[
1
c
H(mNt | n

N
t )+
1
c

log 1F
W
N

exp 3c C
j ¥ T

N
|R(z lj, N

−buN(j/N))|4 dnNt (z¯ )
2

(26)

We estimate the integral in the second term on the right hand side of (26)
using again the Hölder inequality:

F
W
N

exp 3c C
j ¥ T

N
|R(z lj, N

−buN(j/N))|4 dnNt (z¯ )

=F
W
N

exp 3c C
l

i=1
C
M−1

k=0
|R(z lkl+i, N

−buN((kl+i)/N))|4 dnNt (z¯ )
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[ 1D
l

i=1
F
W
N

exp 3 lc C
M−1

k=0
|R(z lkl+i, N

−buN((kl+i)/N))|4 dnNt (z¯ )
21/l

=1 D
j ¥ T

N
F
W
N

exp{lc |R(z lj, N
−buN(j/N))|} dnNt (z¯

)2
1/l

(27)

In the last setp we use the fact that for any fixed i ¥ [1, l] the block
averages z lkl+i, k=0, 1,..., M−1, are independent under the measure nNt .
From (23) it is easy to see that the function

xW R(x+N−buN(j/N), N−buN(j/N)) (28)

is asymptotically quadratic if |x|° 1. If the variables zi ¥ S are bounded
then (28) is automatically bounded. If S is unbounded, but condition D
holds, than (28) is asymptotically linearly bounded for |x|± 1. Thus we
may use Lemma 2 stated below, and eventually from (26), (27) we get for c0
sufficiently small and l \ 1/c0:

C
j ¥ T

N
F
W
N
|R(z lj, N

−buN(j/N))| dmNt (z¯
) [
1
c0
H(mNt | n

N
t )+CNl

−1.

Consequently, using this bound in (24) we find

“tHN(t) [ CHN(t)+MN, l(t)+O(N1−3bKN−blKNl−1), (29)

holding uniformly for t ¥ [0, T].

Lemma 2. Let z1, z2, ... be i.i.d. random variables with zero mean.
Assume, that for every l ¥ R

L(l) :=log E(elzi) <.. (30)

Let the smooth function G: RQ R+ be quadratically, respectively, linearly
bounded for |x|° 1, respectively, |x|± 1, i.e., G(x) [ C1(|x|N (x2/2)),
with some finite constant C1. Then there exist constants c0 > 0 and C <.,
such that for any 0 < c < c0 and l \ 1/c0

E exp{clG((z1+·· ·+zl)/l)} < C. (31)

Remarks. (1) It is worth comparing the statement and proof of
Lemma 2 with the corresponding places in previous works applying the one-
block replacement, see, e.g., Proposition 1.6. in Part 6. of ref. 9. There

Between Equilibrium Fluctuations and Eulerian Scaling 193



usually a weaker statement (o(l) instead of O(1) on the right hand side of
(31)) is gotten by use of more sophisticated tools (large deviation principle
instead of central limit estimate). Actually, we do need the sharper O(1)
bound.

(2) The statement is easily extended: imposing more restrictive con-
ditions on L(l), the growth condition on G(x) can be relaxed. E.g., assum-
ing L(l)=O(l2) for |l|± 1, we may take G(x) quadratically (rather than
linearly) bounded at |x|± 1.

Proof. First we prove the statement with the more restrictive
assumption L(l) [ C2l2/2. Assume c < (C1C2)−1 and let t be a standard
Gaussian random variable, independent of the variables zj . We denote by
O · · ·P expectation with respect to the variable t. Then we have the follow-
ing chain of (in)equalities:

E exp{clG((z1+·· ·+zl)/l)} [ E exp{C1c (z1+·· ·+zl)2/(2l)}

=EOexp(`C1c/l (z1+·· ·+zl) t}P

=OE exp(`C1c/l (z1+·· ·+zl) t}P

=Oexp{l L(`C1c/l t)}P

[ Oexp{C2C1c t2/2)}P

=(1− cC1C2)−1/2.

Now we consider the general case. Choose a so large, that for any x ¥ R

G(x) < ln cosh(ax).

One can do this due to the bounds imposed on G. Let t1, t2, ... be i.i.d
random variables which are also independent of the zj ’s and have the
common distribution P(tj=±a)=1/2. We shall denote by O · · ·P expec-
tation with respect to the random variables tj . We choose l0, C3 so that for
|l | < l0 the quadratic bound L(l) < C3l2/2 holds and fix c < l0/a. Then
we have:

E exp{clG((z1+·· ·+zl)/l)} [ E cosh (a (z1+·· ·+zl)/l) KclL

[ EOexp{(t1+·· ·+tKclL)(z1+·· ·+zl)/l}P

=OE exp{(t1+·· ·+tKclL)(z1+·· ·+zl)/l}P

=Oexp{l L((t1+·· ·+tKclL)/l)}P

[ Oexp{C3(t1+·· ·+tKclL)2/(2l)}P.
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Now, since logcosh(ax) [ a2x2/2, we can apply to the random variables tj
the argument of the first part of this proof, with C2=a2 and C1=C3, to
get

E exp{clG((z1+·· ·+zl)/l)} [ (1− cC3a2)−1/2. L

4.3. The One Block Estimate

The objective of this section is to provide an estimate for
> t0 MN, l(s) ds, whereMN, l(s) is given in (25).

4.3.1. Cutoff

We cut off large values of the block averages. In case of compact state
space, i.e., −. < zmin < zmax <. this step is completely omitted. Clearly,

MN, l(t) [ AN, lK (t)+B
N, l
K (t), (32)

where the terms on the right side are defined as

AN, lK (t) := C
j ¥ T

N
hNx (t, j/N) F

W
N
(Y l

j−Y1 (z lj)) 1{|zlj|Ka |Ylj | [K} dm
N
t (z¯
),

BN, lK (t) := sup
0 < t < T
j ¥ T

N

|hNx (t, j/N)| C
j ¥ T

N
F
W
N
|Y l
j−Y1 (z lj)| 1{|zlj|Ka |Ylj | > K} dm

N
t (z¯
),

where a > 0 is a fixed constant which will only depend on the rate function.
For the estimate of BN, lK (t) we need the following lemma (applied with
m=1 or 2 only):

Lemma 3. Let D: ZmQ R be a finite cylinder variable. Then there
exists a map KW E(K), such that limKQ. E(K)=0 and

C
j ¥ T

N
F
W
N
|Y l
j−Y1 (z lj)| 1{|Dlj | > K} dm

N
t (z¯
) [ E(K) N1−2b.

Proof. The entropy inequality yields:

C
j ¥ T

N
F
W
N
|Y l
j−Y1 (z lj)| 1{|Dlj | > K} dm

N
t (z¯
)

[
1
c
1H(mNt | pN)+log EpN exp 3c C

j ¥ T
N
|Y l
j−Y1 (z lj)| 1{|Dlj | > K}

42
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We note that the jth and kth terms are independent in the last sum if
| j−k| > l+m−1. By the Hölder inequality, for l \ m, we have

log EpN exp 3c C
j ¥ T

N
|Y l
j−Y1 (z lj)| 1{|Dlj | > K}

4

[Nl−1 log EpN exp{2lc |Y l−Y1 (z l)| 1{|Dl| > K}}.

Next we use Cauchy–Schwarz inequality:

EpN exp{2lc |Y l−Y1 (z l)| 1{|Dl| > K}}

[ 1+EpN(1{|Dl| > K} exp{2lc |Y l−Y1 (z l)|})

[ 1+{PpN(|D l| > K)}1/2 {EpN exp{2lc |Y l−Y1 (z l)|}}1/2.

From standard large deviation arguments it follows that there exists a
function [0,.) ¦ c W L(c) ¥ [0,.) (finite for any finite c !), such that

EpN exp{2lc |Y l−Y1 (z l)|} [ exp{l L(c)}.

On the other hand, using again a Hölder bound and a standard large
deviation estimate, for large l we have

PpN(|D l| > K) [ m exp{−lI(K)/(2m)},

where xW I(x) is the rate function

I(x) :=sup
l

(lx− log EpN exp{lD}).

We define

c(K) :=sup{c: L(c) < I(K)/(2m)}NK.

Since limxQ. I(x)=., we also have limKQ. c(K)=.. Now, putting
together all our estimates, we get

C
j ¥ T

N
F
W
N
|Y l
j−Y1 (z lj)| 1{|Dlj | > K} dm

N
t (z¯
)

[
1

c(K)
(H(mNt | p

N)+Nl−1(1+`m )).

Noting that H(mNt | p
N)=O(N1−2b) and l \ CN2b, the lemma follows with

E(K)=Cc(K)−1. L
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It is easy to see, that the functions Dj=zj and Dj=Yj satisfy the
conditions of the Lemma 3, thus it follows that there exists a map
KQ E(K) with limKQ. E(K)=0 and

BN, lK (t) [ E(K) N1−2b. (33)

4.3.2. General Tools

We collect in this paragraph the general, model independent facts used
in the one-block estimate.

Let z
¯
(s) be a Markov process on the countable state space W, with

ergodic stationary measure p. Denote by L and Lg the infinitesimal
generator and its adjoint, acting on L2(W, p). We denote by D(f) the
Dirichlet form associated with the generator L and stationary measure p:

D(f) :=−F
W

fLf dp=−F
W

fLgf dp

The spectral gap of the infinitesimal generator L is r−1 defined by

r=r(L) := sup
f ¥ L2(W, p)

Varp(f)
D(f)

¥ (0,.].

Actually, this means that (L+Lg)/2, the symmetric part of L, has a gap of
size r−1 in its spectrum, immediately to the left of the eigenvalue 0.

If V: W Q R is a bounded measurable function we denote

s̄(L+V( · )) :=sup{spectrum of (L+Lg)/2+V( · )}.

The following statement is the variational characterization of the ‘‘top
of the spectrum’’ of a self-adjoint operator over a Hilbert space. It can be
found in any introductory textbook on functional analysis.

Fact 1. For s̄(L+V( · )) the following variational formula holds:

s̄(L+V( · ))=sup
h

1F
W

V( · ) h dp−D(`h )2 , (34)

where the supremum is taken over all probability densities with respect to
the stationary measure p.

The second fact is a perturbative estimate of s̄(L+eV( · )). It can be
found, e.g., as Theorem 1.1 in Appendix 3 of ref. 9.
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Fact 2. If V: W Q R has zero mean, i.e., >W V dp=0, then, for every
e < (2 ||V||. r(L))−1

s̄(L+eV( · )) [
e2r(L)

1−2 ||V||. er(L)
Varp(V). (35)

The third general fact to be used is a direct consequence of the Feyn-
man–Kac formula and straighforward euclidean (inner product) manipula-
tions. Its proof can be found, e.g., in ref. 11 or as Lemma 7.2 in Appendix 1
of ref. 9.

Fact 3. Assume now that V: R+×W Q R is a bounded function. The
following bound holds

Ep exp 3F t
0
V(s, z

¯
(s)) ds4 [ exp 3F t

0
s̄(L+V(s, · )) ds4 , (36)

where now Ep denotes expectation over the Markov chain trajectories
started from the stationary initial measure p.

4.3.3. Notations
We shall use the notation mN, respectively, m l for a generic probability

measure on WN, respectively, W l. We shall denote by hN(z
¯
), respectively,

h l(z
¯
) their Radon–Nikodym derivatives with respect to the absolute refer-

ence measures pN, respectively, p l. Further on mN, l, j will denote the
[j,..., j+l−1] marginal of mN and mN, l :=N−1; j ¥ T

NmN, l, j the average
l-dimensional marginal of mN. Correspondingly, hN, l, j(z

¯
), respectively,

hN, l(z
¯
) will denote the Radon–Nikodym derivatives of mN, l, j, respectively,

mN, l, with respect to the absolute reference measure p l

For k ¥ Z fixed we denote:

W l
k :=3z¯ ¥ W l: C

l

i=1
zi=k4 ,

m lk :=p l(W l
k),

w lk :=m l(W l
k),

p lk(z¯
) :=p l 1z

¯
: C
l

i=1
zi=k2=1{z

¯
¥ W

l
k}

p l(z
¯
)

m lk
,

m lk(z¯
) :=m l 1z

¯
: C
l

i=1
zi=k2=1{z

¯
¥ W

l
k}

m l(z
¯
)

w lk
,

h lk(z¯
) :=1{z

¯
¥ W

l
k}

m lk(z¯
)

p lk(z¯
)
=1{z

¯
¥ W

l
k}
m lk
w lk
h l(z
¯
).
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Denote by DN, D l respectively D lk the following Dirichlet forms

DN(f) :=1
2 C
N

i=1
F
W
N
c(zi, zi+1)(f(Giz¯

)−f(z
¯
))2 dpN(z

¯
)

=1
2 C
N

i=1
F
W
N
c(zi, zi−1)(f(G

g
i z¯
)−f(z

¯
))2 dpN(z

¯
)

D l(f) :=1
2 C
l−1

i=1
F
W
l
c(zi, zi+1)(f(Giz¯

)−f(z
¯
))2 dp l(z

¯
)

=1
2 C
l

i=2
F
W
l
c(zi, zi−1)(f(G

g
i z¯
)−f(z

¯
))2 dp l(z

¯
)

D lk(f) :=
1
2 C
l−1

i=1
F
W
l
k

c(zi, zi+1)(f(Giz¯
)−f(z

¯
))2 dp lk(z¯

)

=1
2 C
l

i=2
F
W
l
k

c(zi, zi−1)(f(G
g
i z¯
)−f(z

¯
))2 dp lk(z¯

).

In the definition of DN periodic, in that of D l and D lk free boundary condi-
tions are understood.

It is easy to check that for any probability measure m l on W l

D l(`h l )=C
k ¥ Z

w lkD
l
k(`h

l
k ). (37)

Further on, using convexity of the Dirichlet form one can readily prove
that

DN(`hN ) \
1
l

C
j ¥ T

N
D l(`hN, l, j ). (38)

4.3.4. Applying F–K Formula

We return now to the concrete computations. Before the estimate of
> t0 AN, lK (s) ds we need some more notation (we do not denote explicitly
dependence on the cutoff):

VN, lj (z¯
) :=(Y l

j−Y1 (z lj)) 1{|zlj|Ka |Ylj | [K},

V l(z
¯
) :=VN, l1 (z¯

),

VN, lj (t, z¯
) :=hNx (N

−(1+b)t, j/N) VN, lj (z¯
),

VN, l(t, z
¯
) := C

j ¥ T
N
VN, lj (t, z¯

).
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We denote by z
¯

N(t) the Markov process on WN with infinitesimal generator
LN and by EmN0 , respectively, EpN the path measure of this process starting
with initial distribution mN0 , respectively, pN.

By the definitions and the entropy inequality we have

F
t

0
AN, lK (s) ds

=
1
N1+b

EmN0
1FN

1+bt

0
VN, l(s, z

¯

N(s)) ds2

[
1

cN1+b
1H(mN0 | pN)+log EpN exp 3FN

1+bt

0
cVN, l(s, z

¯

N(s)) ds42 .

We apply the Feynman–Kac bound (36) and the variational formula (34)
to the second term on the right hand side of the last inequality:

log EpN exp 3FN
1+bt

0
cVN, l(s, z

¯

N(s)) ds4

[ F
N1+bt

0
s̄(LN+cVN, l(s, · )) ds

=F
N1+bt

0
sup
hN
1F
W
N

cVN, l(s, · ) hN dpN−DN(`hN )2 ds. (39)

Using (38) we bound the integrand in the last expression

sup
hN
1F
W
N

cVN, l(s, · ) hN, l dp l−DN(`hN )2

=sup
hN
1 C
j ¥ T

N
F
W
l
cVN, lj (s, · ) h

N, l, j dp l−DN(`hN )2

[ sup
hN

C
j ¥ T

N

1F
W
l
cVN, lj (s, · ) h

N, l, j dp l−
1
l
D l(`hN, l, j )2

[
1
l

C
j ¥ T

N
sup
hl
1F
W
l
lcVN, lj (s, · ) h

l dp l−D l(`h l )2 . (40)
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Next we use (37) and again the variational formula (34)

sup
hl

1F
W
l
lcVN, lj (s, · ) h

l dp l−D l(`h l )2

=sup
hl

C
k
w lk 1F

W
l
k

lcVN, lj (s, · ) h
l
k dp

l
k−D

l
k(`h

l
k )2

=sup
wl·

C
k
w lk sup

hlk

1F
W
l
k

lcVN, lj (s, · ) h
l
k dp

l
k−D

l
k(`h

l
k )2

=sup
wl·

C
k
w lks̄(L

l
k+lcV

N, l
j (s, · ))

=sup
wl·

C
k
w lk(lchNx (s, j/N) E lk(V

l)

+s̄(L lk+lchNx (s, j/N)(V
l−E lk(V

l))) (41)

In the first step we used (37). The second step is a straightforward identity.
In the third step we have used again (34) and we introduced the notation
L lk for the infinitesimal generator of the process restricted to W l

k. Finally, in
the last step we use the notation introduced at the beginning of the present
paragraph.

4.3.5. Spectral Estimates

The rest of the proof of the one block estimate relies on the following
three steps: (1) a straightforward estimate of E lk(V

l) and Var lk(V
l); (2) a

lower bound of order ’ l−2 on the spectral gap of L lk, valid uniformly in
k ¥ Z; (3) combining these two and the perturbational bound (35), an upper
bound on s̄(...) appearing in the last expression.

Lemma 4. There exist constant C(K) <. for every K >K0, such
that for any l and k the following bounds hold:

|E lk(V
l)| [ C(K) l−1, Var lk(V

l) [ C(K) l−1. (42)

Proof. For |k| > Kl there is nothing to prove, so let |k| [Kl.
Restricted on W l

k

V l=Y l−Y1 (k/l)−(Y l−Y1 (k/l)) 1{a |Yl| > K}.

Consequently,

|E lk(V
l)| [ 2 |E lk(Y

l−Y1 (k/l))|+E lk(|Y
l−E lkY

l| 1{a |Yl| > K}).
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By the equivalence of ensembles (see, e.g., Appendix 2. of ref. 9 and also
ref. 7)

|E lk(Y
l−Y1 (k/l))| [ C(K) l−1.

The second term can be estimated with the Cauchy–Schwarz inequality and
with large deviation techniques (noting that because of the growth condi-
tions on the rates we can choose such a > 0 that a−1K > |E lkY

l| uniformly
for |k| < Kl) and it can be easily shown to be smaller order then the first
one. Var lk(V

l) may be estimated with similar methods. L

Lemma 5. There exists a constant C <., independent of l and k,
such that for any f ¥ L2(W l

k, p
l
k)

Var lk(f) [ Cl
2D lk(f). (43)

Proof. For the details of the proof of this gap-estimate we refer to
refs. 7, 9, and 12. For models with bounded z-variable, −. < zmin <
zmax <., we note that

c(x, y) \ a r(x) 1{x > zmin, y < zmax}.

with some positive constant a. Thus, it is sufficient to prove the gap esti-
mate for the reversible process with rates c̃(x, y) :=r(x) 1{x > zmin, y < zmax},
which has the same ergodic stationary measures p lk as our original process.
For this latter process the induction steps of ref. 7 or Appendix 3 of ref. 9
apply without any essential modification.

In ref. 7 the statement is proved for zero range model with rate func-
tion satisfying condition (D). Minor formal (but not essential) modifica-
tions of that argument yield the result for the bricklayers’ models with rate
functions satisfying condition (D). L

Remark. Actually we could consider a wider class of models with
unbounded spin space, by imposing

inf
y
c(x, y) \ a r(x)

with some positive constant a and r(x) obeying condition (D).
We remark that there exists a constant C depending only on the solu-

tion u(t, x) of the Burgers’ equation (4), and another constant C(K) which
depends also on the cutoff level K, such that
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sup
0 < t < T
j ¥ T

N

|hNx (t, j/N)| [ C, (44)

||V l−E lkV
l||. [ C(K) (45)

Now, combining (35), (42), (43), (44) and (45), we get the following
upper bound, which holds for every sufficiently small c:

s̄(L lk+lchNx (s, j/N)(V
l−E lk(V

l))) [
C1(K) l3c2

1−C2(K) cl3

Setting

c :=c0l−3 with c0 <min{1, (2C2(K))−1}

we have

s̄(L lk+lchNx (s, j/N)(V
l−E lk(V

l))) [ C(K) c20l
−3.

Collecting all the estimates and going backwards through (41), (40), (39),
we find eventually

log EpN exp 3FN
1+bt

0
cVN, l(s, z

¯

N(s)) ds4 [ C(K) c0N2+bl−4

and

F
t

0
AN, lK (s) ds [ C(K)(N

−3bl3+Nl−1) (46)

Consequently, from (46), (33) and (32), with any fixed K <. we have

F
t

0
MN, l(s) ds [ E(K) O(N1−2b)+C(K)(N−3bl3+Nl−1) (47)

where C(K) is a finite constant which may increase to infinity as KQ.,
and E(K)Q 0 as KQ..

4.4. End of Proof

We put together (29) and (47) to get, for any K <. fixed (with a C
not depending on K)

HN(t) [HN(0)+C F
t

0
HN(s) ds+E(K) O(N1−2b)

+O(N1−3bKN−blKNl−1KN−3bl3).
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If

0 < b < 15

then we can choose

N2b° l°N (1+b)/3

which ensures

O(N1−3bKN−blKNl−1KN−3bl3)=o(N1−2b).

Thus for every K <.

HN(t) [HN(0)+C F
t

0
HN(s) ds+E(K) N1−2b+o(N1−2b),

where limKQ. E(K)=0, and from Grönwall indeed (9) follows, uniformly
for t ¥ [0, T].

Remark. Up to Section 4.3 the calculations for the error terms only
imply the restriction 0 < b < 13 , the spectral gap estimate decreases the
upper bound to 1

5 . The authors believe that one cannot get better results
than 0 < b < 13 with the methods used.
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6. M. Balázs, Microscopic structure of the shock in a domain growth model, J. Stat. Phys.
105:511–524 (2001).

7. C. Landim, S. Sethuraman, and S. R. S. Varadhan, Spectral gap for zero range dynamics,
Ann. of Probab. 24:1871–1902 (1986).

8. H. T. Yau, Relative entropy and hydrodynamics of Ginzburg–Landau models, Lett.
Math. Phys. 22:63–80 (1991).

9. C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems (Springer, 1999).
10. J. Fritz, An Introduction to the Theory of Hydrodynamic Limits, Lectures in Mathematical

Sciences (Graduate School of Mathematics, Univ. Tokyo, 2001).
11. K. Komoriya, Hydrodynamic limit for asymmetric mean zero exclusion processes with

speed change, Ann. I. H. Poincaré—Pr. 34:767–797 (1998).
12. S. L. Lu and H. T. Yau, Spectral gap and logarothmic Sobolev inequality for Kawasaki

and Glauber dynamics, Comm. Math. Phys. 156:399–433 (1993).

Between Equilibrium Fluctuations and Eulerian Scaling 205


	1. INTRODUCTION
	2. PRELIMINARIES
	3. THE MAIN RESULT
	4. PROOF
	ACKNOWLEDGMENTS

